// adapted from // https://github.com/datenwolf/linmath.h #ifndef LINMATH_H #define LINMATH_H #include #include #ifdef LINMATH_NO_INLINE #define LINMATH_H_FUNC static #else #define LINMATH_H_FUNC static inline #endif #define LINMATH_H_DEFINE_VEC(n) \ typedef float vec##n[n]; \ LINMATH_H_FUNC void vec##n##_add(vec##n r, vec##n const a, vec##n const b) { \ int i; \ for (i = 0; i < n; ++i) \ r[i] = a[i] + b[i]; \ } \ LINMATH_H_FUNC void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) { \ int i; \ for (i = 0; i < n; ++i) \ r[i] = a[i] - b[i]; \ } \ LINMATH_H_FUNC void vec##n##_scale(vec##n r, vec##n const v, \ float const s) { \ int i; \ for (i = 0; i < n; ++i) \ r[i] = v[i] * s; \ } \ LINMATH_H_FUNC float vec##n##_mul_inner(vec##n const a, vec##n const b) { \ float p = 0.f; \ int i; \ for (i = 0; i < n; ++i) \ p += b[i] * a[i]; \ return p; \ } \ LINMATH_H_FUNC float vec##n##_len(vec##n const v) { \ return sqrtf(vec##n##_mul_inner(v, v)); \ } \ LINMATH_H_FUNC void vec##n##_norm(vec##n r, vec##n const v) { \ float l = vec##n##_len(v); \ float k = 1.f / (l == 0.0 ? 1.0 : l); \ vec##n##_scale(r, v, k); \ } \ LINMATH_H_FUNC void vec##n##_min(vec##n r, vec##n const a, vec##n const b) { \ int i; \ for (i = 0; i < n; ++i) \ r[i] = a[i] < b[i] ? a[i] : b[i]; \ } \ LINMATH_H_FUNC void vec##n##_max(vec##n r, vec##n const a, vec##n const b) { \ int i; \ for (i = 0; i < n; ++i) \ r[i] = a[i] > b[i] ? a[i] : b[i]; \ } \ LINMATH_H_FUNC void vec##n##_dup(vec##n r, vec##n const src) { \ int i; \ for (i = 0; i < n; ++i) \ r[i] = src[i]; \ } LINMATH_H_DEFINE_VEC(2) LINMATH_H_DEFINE_VEC(3) LINMATH_H_DEFINE_VEC(4) LINMATH_H_FUNC void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) { r[0] = a[1] * b[2] - a[2] * b[1]; r[1] = a[2] * b[0] - a[0] * b[2]; r[2] = a[0] * b[1] - a[1] * b[0]; } LINMATH_H_FUNC void vec3_reflect(vec3 r, vec3 const v, vec3 const n) { float p = 2.f * vec3_mul_inner(v, n); int i; for (i = 0; i < 3; ++i) r[i] = v[i] - p * n[i]; } LINMATH_H_FUNC void vec4_mul_cross(vec4 r, vec4 const a, vec4 const b) { r[0] = a[1] * b[2] - a[2] * b[1]; r[1] = a[2] * b[0] - a[0] * b[2]; r[2] = a[0] * b[1] - a[1] * b[0]; r[3] = 1.f; } LINMATH_H_FUNC void vec4_reflect(vec4 r, vec4 const v, vec4 const n) { float p = 2.f * vec4_mul_inner(v, n); int i; for (i = 0; i < 4; ++i) r[i] = v[i] - p * n[i]; } typedef vec4 mat4x4[4]; LINMATH_H_FUNC void mat4x4_identity(mat4x4 M) { int i, j; for (i = 0; i < 4; ++i) for (j = 0; j < 4; ++j) M[i][j] = i == j ? 1.f : 0.f; } LINMATH_H_FUNC void mat4x4_dup(mat4x4 M, mat4x4 const N) { int i; for (i = 0; i < 4; ++i) vec4_dup(M[i], N[i]); } LINMATH_H_FUNC void mat4x4_row(vec4 r, mat4x4 const M, int i) { int k; for (k = 0; k < 4; ++k) r[k] = M[k][i]; } LINMATH_H_FUNC void mat4x4_col(vec4 r, mat4x4 const M, int i) { int k; for (k = 0; k < 4; ++k) r[k] = M[i][k]; } LINMATH_H_FUNC void mat4x4_transpose(mat4x4 M, mat4x4 const N) { // Note: if M and N are the same, the user has to // explicitly make a copy of M and set it to N. int i, j; for (j = 0; j < 4; ++j) for (i = 0; i < 4; ++i) M[i][j] = N[j][i]; } LINMATH_H_FUNC void mat4x4_add(mat4x4 M, mat4x4 const a, mat4x4 const b) { int i; for (i = 0; i < 4; ++i) vec4_add(M[i], a[i], b[i]); } LINMATH_H_FUNC void mat4x4_sub(mat4x4 M, mat4x4 const a, mat4x4 const b) { int i; for (i = 0; i < 4; ++i) vec4_sub(M[i], a[i], b[i]); } LINMATH_H_FUNC void mat4x4_scale(mat4x4 M, mat4x4 const a, float k) { int i; for (i = 0; i < 4; ++i) vec4_scale(M[i], a[i], k); } LINMATH_H_FUNC void mat4x4_scale_aniso(mat4x4 M, mat4x4 const a, float x, float y, float z) { vec4_scale(M[0], a[0], x); vec4_scale(M[1], a[1], y); vec4_scale(M[2], a[2], z); vec4_dup(M[3], a[3]); } LINMATH_H_FUNC void mat4x4_mul(mat4x4 M, mat4x4 const a, mat4x4 const b) { mat4x4 temp; int k, r, c; for (c = 0; c < 4; ++c) for (r = 0; r < 4; ++r) { temp[c][r] = 0.f; for (k = 0; k < 4; ++k) temp[c][r] += a[k][r] * b[c][k]; } mat4x4_dup(M, temp); } LINMATH_H_FUNC void mat4x4_mul_vec4(vec4 r, mat4x4 const M, vec4 const v) { int i, j; for (j = 0; j < 4; ++j) { r[j] = 0.f; for (i = 0; i < 4; ++i) r[j] += M[i][j] * v[i]; } } LINMATH_H_FUNC void mat4x4_translate(mat4x4 T, float x, float y, float z) { mat4x4_identity(T); T[3][0] = x; T[3][1] = y; T[3][2] = z; } LINMATH_H_FUNC void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z) { vec4 t = {x, y, z, 0}; vec4 r; int i; for (i = 0; i < 4; ++i) { mat4x4_row(r, M, i); M[3][i] += vec4_mul_inner(r, t); } } LINMATH_H_FUNC void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 const a, vec3 const b) { int i, j; for (i = 0; i < 4; ++i) for (j = 0; j < 4; ++j) M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.f; } LINMATH_H_FUNC void mat4x4_rotate(mat4x4 R, mat4x4 const M, float x, float y, float z, float angle) { float s = sinf(angle); float c = cosf(angle); vec3 u = {x, y, z}; if (vec3_len(u) > 1e-4) { vec3_norm(u, u); mat4x4 T; mat4x4_from_vec3_mul_outer(T, u, u); mat4x4 S = {{0, u[2], -u[1], 0}, {-u[2], 0, u[0], 0}, {u[1], -u[0], 0, 0}, {0, 0, 0, 0}}; mat4x4_scale(S, S, s); mat4x4 C; mat4x4_identity(C); mat4x4_sub(C, C, T); mat4x4_scale(C, C, c); mat4x4_add(T, T, C); mat4x4_add(T, T, S); T[3][3] = 1.f; mat4x4_mul(R, M, T); } else { mat4x4_dup(R, M); } } LINMATH_H_FUNC void mat4x4_rotate_X(mat4x4 Q, mat4x4 const M, float angle) { float s = sinf(angle); float c = cosf(angle); mat4x4 R = {{1.f, 0.f, 0.f, 0.f}, {0.f, c, s, 0.f}, {0.f, -s, c, 0.f}, {0.f, 0.f, 0.f, 1.f}}; mat4x4_mul(Q, M, R); } LINMATH_H_FUNC void mat4x4_rotate_Y(mat4x4 Q, mat4x4 const M, float angle) { float s = sinf(angle); float c = cosf(angle); mat4x4 R = {{c, 0.f, -s, 0.f}, {0.f, 1.f, 0.f, 0.f}, {s, 0.f, c, 0.f}, {0.f, 0.f, 0.f, 1.f}}; mat4x4_mul(Q, M, R); } LINMATH_H_FUNC void mat4x4_rotate_Z(mat4x4 Q, mat4x4 const M, float angle) { float s = sinf(angle); float c = cosf(angle); mat4x4 R = {{c, s, 0.f, 0.f}, {-s, c, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f}, {0.f, 0.f, 0.f, 1.f}}; mat4x4_mul(Q, M, R); } LINMATH_H_FUNC void mat4x4_invert(mat4x4 T, mat4x4 const M) { float s[6]; float c[6]; s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1]; s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2]; s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3]; s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2]; s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3]; s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3]; c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1]; c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2]; c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3]; c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2]; c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3]; c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3]; /* Assumes it is invertible */ float idet = 1.0f / (s[0] * c[5] - s[1] * c[4] + s[2] * c[3] + s[3] * c[2] - s[4] * c[1] + s[5] * c[0]); T[0][0] = (M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; T[0][2] = (M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet; T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet; T[1][1] = (M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet; T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet; T[1][3] = (M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet; T[2][0] = (M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet; T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet; T[2][2] = (M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet; T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet; T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet; T[3][1] = (M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet; T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; T[3][3] = (M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; } LINMATH_H_FUNC void mat4x4_orthonormalize(mat4x4 R, mat4x4 const M) { mat4x4_dup(R, M); float s = 1.f; vec3 h; vec3_norm(R[2], R[2]); s = vec3_mul_inner(R[1], R[2]); vec3_scale(h, R[2], s); vec3_sub(R[1], R[1], h); vec3_norm(R[1], R[1]); s = vec3_mul_inner(R[0], R[2]); vec3_scale(h, R[2], s); vec3_sub(R[0], R[0], h); s = vec3_mul_inner(R[0], R[1]); vec3_scale(h, R[1], s); vec3_sub(R[0], R[0], h); vec3_norm(R[0], R[0]); } LINMATH_H_FUNC void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f) { M[0][0] = 2.f * n / (r - l); M[0][1] = M[0][2] = M[0][3] = 0.f; M[1][1] = 2.f * n / (t - b); M[1][0] = M[1][2] = M[1][3] = 0.f; M[2][0] = (r + l) / (r - l); M[2][1] = (t + b) / (t - b); M[2][2] = -(f + n) / (f - n); M[2][3] = -1.f; M[3][2] = -2.f * (f * n) / (f - n); M[3][0] = M[3][1] = M[3][3] = 0.f; } LINMATH_H_FUNC void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f) { M[0][0] = 2.f / (r - l); M[0][1] = M[0][2] = M[0][3] = 0.f; M[1][1] = 2.f / (t - b); M[1][0] = M[1][2] = M[1][3] = 0.f; M[2][2] = -2.f / (f - n); M[2][0] = M[2][1] = M[2][3] = 0.f; M[3][0] = -(r + l) / (r - l); M[3][1] = -(t + b) / (t - b); M[3][2] = -(f + n) / (f - n); M[3][3] = 1.f; } LINMATH_H_FUNC void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f) { /* NOTE: Degrees are an unhandy unit to work with. * linmath.h uses radians for everything! */ float const a = 1.f / tanf(y_fov / 2.f); m[0][0] = a / aspect; m[0][1] = 0.f; m[0][2] = 0.f; m[0][3] = 0.f; m[1][0] = 0.f; m[1][1] = a; m[1][2] = 0.f; m[1][3] = 0.f; m[2][0] = 0.f; m[2][1] = 0.f; m[2][2] = -((f + n) / (f - n)); m[2][3] = -1.f; m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = -((2.f * f * n) / (f - n)); m[3][3] = 0.f; } LINMATH_H_FUNC void mat4x4_look_at(mat4x4 m, vec3 const eye, vec3 const center, vec3 const up) { /* Adapted from Android's OpenGL Matrix.java. */ /* See the OpenGL GLUT documentation for gluLookAt for a description */ /* of the algorithm. We implement it in a straightforward way: */ /* TODO: The negation of of can be spared by swapping the order of * operands in the following cross products in the right way. */ vec3 f; vec3_sub(f, center, eye); vec3_norm(f, f); vec3 s; vec3_mul_cross(s, f, up); vec3_norm(s, s); vec3 t; vec3_mul_cross(t, s, f); m[0][0] = s[0]; m[0][1] = t[0]; m[0][2] = -f[0]; m[0][3] = 0.f; m[1][0] = s[1]; m[1][1] = t[1]; m[1][2] = -f[1]; m[1][3] = 0.f; m[2][0] = s[2]; m[2][1] = t[2]; m[2][2] = -f[2]; m[2][3] = 0.f; m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f; mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]); } typedef float quat[4]; #define quat_add vec4_add #define quat_sub vec4_sub #define quat_norm vec4_norm #define quat_scale vec4_scale #define quat_mul_inner vec4_mul_inner LINMATH_H_FUNC void quat_identity(quat q) { q[0] = q[1] = q[2] = 0.f; q[3] = 1.f; } LINMATH_H_FUNC void quat_mul(quat r, quat const p, quat const q) { vec3 w; vec3_mul_cross(r, p, q); vec3_scale(w, p, q[3]); vec3_add(r, r, w); vec3_scale(w, q, p[3]); vec3_add(r, r, w); r[3] = p[3] * q[3] - vec3_mul_inner(p, q); } LINMATH_H_FUNC void quat_conj(quat r, quat const q) { int i; for (i = 0; i < 3; ++i) r[i] = -q[i]; r[3] = q[3]; } LINMATH_H_FUNC void quat_rotate(quat r, float angle, vec3 const axis) { vec3 axis_norm; vec3_norm(axis_norm, axis); float s = sinf(angle / 2); float c = cosf(angle / 2); vec3_scale(r, axis_norm, s); r[3] = c; } LINMATH_H_FUNC void quat_mul_vec3(vec3 r, quat const q, vec3 const v) { /* * Method by Fabian 'ryg' Giessen (of Farbrausch) t = 2 * cross(q.xyz, v) v' = v + q.w * t + cross(q.xyz, t) */ vec3 t; vec3 q_xyz = {q[0], q[1], q[2]}; vec3 u = {q[0], q[1], q[2]}; vec3_mul_cross(t, q_xyz, v); vec3_scale(t, t, 2); vec3_mul_cross(u, q_xyz, t); vec3_scale(t, t, q[3]); vec3_add(r, v, t); vec3_add(r, r, u); } LINMATH_H_FUNC void mat4x4_from_quat(mat4x4 M, quat const q) { float a = q[3]; float b = q[0]; float c = q[1]; float d = q[2]; float a2 = a * a; float b2 = b * b; float c2 = c * c; float d2 = d * d; M[0][0] = a2 + b2 - c2 - d2; M[0][1] = 2.f * (b * c + a * d); M[0][2] = 2.f * (b * d - a * c); M[0][3] = 0.f; M[1][0] = 2 * (b * c - a * d); M[1][1] = a2 - b2 + c2 - d2; M[1][2] = 2.f * (c * d + a * b); M[1][3] = 0.f; M[2][0] = 2.f * (b * d + a * c); M[2][1] = 2.f * (c * d - a * b); M[2][2] = a2 - b2 - c2 + d2; M[2][3] = 0.f; M[3][0] = M[3][1] = M[3][2] = 0.f; M[3][3] = 1.f; } LINMATH_H_FUNC void mat4x4o_mul_quat(mat4x4 R, mat4x4 const M, quat const q) { /* XXX: The way this is written only works for orthogonal matrices. */ /* TODO: Take care of non-orthogonal case. */ quat_mul_vec3(R[0], q, M[0]); quat_mul_vec3(R[1], q, M[1]); quat_mul_vec3(R[2], q, M[2]); R[3][0] = R[3][1] = R[3][2] = 0.f; R[0][3] = M[0][3]; R[1][3] = M[1][3]; R[2][3] = M[2][3]; R[3][3] = M[3][3]; // typically 1.0, but here we make it general } LINMATH_H_FUNC void quat_from_mat4x4(quat q, mat4x4 const M) { float r = 0.f; int i; int perm[] = {0, 1, 2, 0, 1}; int *p = perm; for (i = 0; i < 3; i++) { float m = M[i][i]; if (m < r) continue; m = r; p = &perm[i]; } r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]); if (r < 1e-6) { q[0] = 1.f; q[1] = q[2] = q[3] = 0.f; return; } q[0] = r / 2.f; q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]]) / (2.f * r); q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]]) / (2.f * r); q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]]) / (2.f * r); } LINMATH_H_FUNC void mat4x4_arcball(mat4x4 R, mat4x4 const M, vec2 const _a, vec2 const _b, float s) { vec2 a; memcpy(a, _a, sizeof(a)); vec2 b; memcpy(b, _b, sizeof(b)); float z_a = 0.f; float z_b = 0.f; if (vec2_len(a) < 1.f) { z_a = sqrtf(1.f - vec2_mul_inner(a, a)); } else { vec2_norm(a, a); } if (vec2_len(b) < 1.f) { z_b = sqrtf(1.f - vec2_mul_inner(b, b)); } else { vec2_norm(b, b); } vec3 a_ = {a[0], a[1], z_a}; vec3 b_ = {b[0], b[1], z_b}; vec3 c_; vec3_mul_cross(c_, a_, b_); float const angle = acos(vec3_mul_inner(a_, b_)) * s; mat4x4_rotate(R, M, c_[0], c_[1], c_[2], angle); } #endif