99 lines
No EOL
2.6 KiB
JavaScript
99 lines
No EOL
2.6 KiB
JavaScript
|
|
// derived from https://git.dervland.net/biglyderv/new-bigly-chat/src/branch/master/docs/stats.php
|
|
function rankCalc(result, iterations = 10) {
|
|
let matrixe = {}
|
|
let fng = {};
|
|
let fnc = {};
|
|
let frs = {};
|
|
let msum_old = 0.001;
|
|
let pr = {};
|
|
|
|
for (let unn in result) {
|
|
matrixe[unn] = {};
|
|
matrixe[unn][unn] = 1;
|
|
frs[unn] = result[unn].followers;
|
|
fng[unn] = result[unn].following;
|
|
fnc[unn] = Object.keys(fng[unn]).length;
|
|
pr[unn] = 1;
|
|
}
|
|
|
|
for (let unn in result) {
|
|
let fnu = frs[unn];
|
|
for (let follow of fnu) {
|
|
if (follow == unn) continue;
|
|
let dst = fnc[fnu] || 0;
|
|
matrixe[unn][follow] = 1 + 0.1 / (dst + 10);
|
|
msum_old += matrixe[unn][follow];
|
|
}
|
|
for (let unn2 in result) {
|
|
if (!matrixe[unn][unn2]) {
|
|
matrixe[unn][unn2] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
let mm = (process.env.matrixIterations || iterations);
|
|
|
|
let discarded = 0;
|
|
for (let i = 0; i < mm; i++) {
|
|
let prold = pr;
|
|
let matrixf = matrixe;
|
|
|
|
pr = [];
|
|
matrixe = [];
|
|
let msum = 1;
|
|
let intv = Math.pow(1/1000,Math.pow(0.25, i / Math.sqrt(mm)));
|
|
console.log(`Completed ${i} iterations with ${intv} threshold and ${discarded * 100}% discard rate`)
|
|
discarded = 0;
|
|
|
|
for (let una in result) {
|
|
pr[una] = 0;
|
|
matrixe[una] = [];
|
|
if (frs[una].length == 0) {
|
|
matrixe[una] = matrixf[una];
|
|
discarded += 1 / Object.keys(result).length
|
|
continue;
|
|
}
|
|
|
|
for (let unb in result) {
|
|
let prb = prold[unb];
|
|
matrixe[una][unb] = 0.03;
|
|
|
|
if (prb < intv || fnc[unb] == 0) {
|
|
pr[unb] = prb;
|
|
discarded += Math.pow(Object.keys(result).length,-2);
|
|
continue;
|
|
}
|
|
|
|
for (let unc in result) {
|
|
matrixe[una][unb] += matrixf[una][unc] * matrixf[unc][unb];
|
|
}
|
|
|
|
msum += matrixe[una][unb];
|
|
pr[una] += prb * matrixe[una][unb];
|
|
}
|
|
}
|
|
|
|
|
|
for (let una in result) {
|
|
if ((frs[una]).length == 0) continue;
|
|
|
|
for (let unb in result) {
|
|
matrixe[una][unb] *= msum_old / msum;
|
|
}
|
|
}
|
|
|
|
let new_sum = Object.values(pr).reduce((a, b) => a + b, 0)
|
|
|
|
for (let unn in result) {
|
|
pr[unn] /= new_sum;
|
|
}
|
|
}
|
|
|
|
return pr;
|
|
|
|
}
|
|
|
|
export {
|
|
rankCalc
|
|
} |