bigly-caret/rank.js
2025-02-01 03:01:23 -05:00

160 lines
No EOL
4.4 KiB
JavaScript

// derived from https://git.dervland.net/biglyderv/new-bigly-chat/src/branch/master/docs/stats.php
function rankCalc(result, iterations = 10, main = [], domain_mode = false) {
let matrixe = {}
let fng = {};
let fnc = {};
let frs = {};
let msum_old = 0.001;
let pr = {};
let rl = Object.keys(result).length;
for (let unn in result) {
let v = false;
if (domain_mode) {
v = false;
try {
let test = new URL(unn);
v = true;
} catch (err) {
v = false;
}
}
if (!v) {
delete result[unn];
continue;
}
matrixe[unn] = {};
matrixe[unn][unn] = 1;
frs[unn] = result[unn].followers;
fng[unn] = result[unn].following;
let lf = Object.keys(fng[unn]).length;
if (domain_mode) {
let domains = [];
for (let x of fng[unn]) {
try {
let a = new URL(x);
domains.push(a.host);
} catch (err) {
}
}
domains = [...new Set(domains)];
fnc[unn] = lf / (1 + domains.length);
} else {
fnc[unn] = lf;
}
pr[unn] = 0.1 / rl;
}
for (let unn in result) {
let fnu = frs[unn];
for (let follow of fnu) {
if (follow == unn) continue;
let dst = fnc[fnu] || 0;
matrixe[unn][follow] = 1 + 1 / (dst + 3);
msum_old += matrixe[unn][follow];
}
for (let unn2 in result) {
if (!matrixe[unn][unn2]) {
matrixe[unn][unn2] = 0;
}
}
}
let mm = (process.env.matrixIterations || iterations);
for (let i = 0; i < mm; i++) {
let prold = pr;
let matrixf = matrixe;
pr = [];
matrixe = [];
let msum = 1;
let intv = Math.pow(0.001 / rl, Math.pow(0.09, i / mm));
console.log(`Completed ${i} iterations with ${intv} threshold`)
let th = -1;
for (let una in result) {
th++;
pr[una] = 0.1 / rl;
matrixe[una] = [];
if (frs[una].length == 0) {
pr[una] = prold[una];
matrixe[una] = matrixf[una];
continue;
}
let ar = Object.keys(result);
let rf = pr[una];
let muna = matrixe[una];
let muna2 = matrixf[una];
for (let unb of ar) {
let prb = prold[unb];
muna[unb] = 0.03;
let munb = muna2[unb];
if (prb * munb < intv || fnc[unb] == 0) {
if (isNaN(mfb) || !munb) continue;
pr[una] += prb * munb;
continue;
}
for (let unc in result) {
let mfc = muna2[unc];
let mfb = matrixf[unc][unb];
if (isNaN(mfc) || isNaN(mfb) || !mfc || !mfb) continue;
matrixe[una][unb] += mfc * mfb;
}
msum += munb;
pr[una] += prb * munb;
}
}
for (let una in result) {
if ((frs[una]).length == 0) continue;
for (let unb in result) {
matrixe[una][unb] *= msum_old / msum;
}
}
let ov = Object.keys(pr);
let new_sum = ov.filter(i => !isNaN(pr[i]) && main.indexOf(i) != -1).map(n => pr[n]).reduce((a, b) => a + b, 1e-9);
let new_sum2 = ov.filter(i => !isNaN(pr[i]) && main.indexOf(i) == -1 && (domain_mode && new URL(i).host == new URL(main[0]).host)).map(n => pr[n]).reduce((a, b) => a + b, 1e-9);
let new_sum3 = ov.filter(i => !isNaN(pr[i]) && main.indexOf(i) == -1 && !(domain_mode && new URL(i).host == new URL(main[0]).host)).map(n => pr[n]).reduce((a, b) => a + b, 1e-9);
for (let unn of ov) {
if (!result[unn]) {
pr[unn] = 0;
} else if ((domain_mode && new URL(unn).host == new URL(main[0]).host) && main.indexOf(unn) == -1) {
pr[unn] /= new_sum2 * 3;
} else if (main.indexOf(unn) == -1) {
pr[unn] /= new_sum3 * (domain_mode ? 3 : 2);
} else {
pr[unn] /= new_sum * (domain_mode ? 3 : 2);
}
}
}
return pr;
}
export {
rankCalc
}