// derived from https://git.dervland.net/biglyderv/new-bigly-chat/src/branch/master/docs/stats.php function rankCalc(result, iterations = 10) { let matrixe = {} let fng = {}; let fnc = {}; let frs = {}; let msum_old = 0.001; let pr = {}; for (let unn in result) { matrixe[unn] = {}; matrixe[unn][unn] = 1; frs[unn] = result[unn].followers; fng[unn] = result[unn].following; fnc[unn] = Object.keys(fng[unn]).length; pr[unn] = 1; } for (let unn in result) { let fnu = frs[unn]; for (let follow of fnu) { if (follow == unn) continue; let dst = fnc[fnu] || 0; matrixe[unn][follow] = 1 + 0.1 / (dst + 10); msum_old += matrixe[unn][follow]; } for (let unn2 in result) { if (!matrixe[unn][unn2]) { matrixe[unn][unn2] = 0; } } } let mm = (process.env.matrixIterations || iterations); let discarded = 0; for (let i = 0; i < mm; i++) { let prold = pr; let matrixf = matrixe; pr = []; matrixe = []; let msum = 1; let intv = Math.pow(1/1000,Math.pow(0.25, i / Math.sqrt(mm))); console.log(`Completed ${i} iterations with ${intv} threshold and ${discarded * 100}% discard rate`) discarded = 0; for (let una in result) { pr[una] = 0; matrixe[una] = []; if (frs[una].length == 0) { pr[una] = prold[una]; matrixe[una] = matrixf[una]; discarded += 1 / Object.keys(result).length continue; } for (let unb in result) { let prb = prold[unb]; matrixe[una][unb] = 0.03; if (prb < intv || fnc[unb] == 0) { pr[una] = prold[una]; discarded += Math.pow(Object.keys(result).length,-2); continue; } for (let unc in result) { matrixe[una][unb] += matrixf[una][unc] * matrixf[unc][unb]; } msum += matrixe[una][unb]; pr[una] += prb * matrixe[una][unb]; } } for (let una in result) { if ((frs[una]).length == 0) continue; for (let unb in result) { matrixe[una][unb] *= msum_old / msum; } } let new_sum = Object.values(pr).reduce((a, b) => a + b, 0) for (let unn in result) { pr[unn] /= new_sum; } } return pr; } export { rankCalc }