import { GPU, input, Input } from "gpu.js"; // derived from https://git.dervland.net/biglyderv/new-bigly-chat/src/branch/master/docs/stats.php function rankCalc(result, iterations = 10, main = [], domain_mode = false) { let fng = {}; let fnc = {}; let frs = {}; let msum_old = 0.001; let pr = {}; let rl = Object.keys(result).length; let matrixe = new Float32Array(rl ** 2); for (let i = 0; i < rl ** 2; i += (rl + 1)) { matrixe[i] = 1; } let keys = Object.keys(result); for (let unn in result) { let v = true; if (domain_mode) { v = false; try { let test = new URL(unn); v = true; } catch (err) { v = false; } } if (!v) { continue; } frs[unn] = result[unn].followers || []; fng[unn] = result[unn].following || []; let lf = Object.keys(fng[unn]).length; if (domain_mode) { let domains = []; for (let x of fng[unn]) { try { let a = new URL(x); domains.push(a.host); } catch (err) { } } domains = [...new Set(domains)]; fnc[unn] = lf / (1 + domains.length); } else { fnc[unn] = lf; } pr[unn] = 0.1 / rl; } for (let unn in result) { let fnu = frs[unn]; if (!pr[unn]) pr[unn] = 0; for (let follow of fnu) { if (follow == unn) continue; let dst = fnc[fnu] || 0; let n = (keys.indexOf(unn) || 0) * (rl) + (keys.indexOf(follow) || 0) * 1; matrixe[n] = 1.1 + 1 / (dst + 3); msum_old += matrixe[n]; } } let mm = (process.env.matrixIterations || iterations); let gpu = new GPU(); const multiplyMatrix = gpu.createKernel(function (a, b, c) { let sum = 0; for (let i = 0; i < c; i++) { sum += a[(this.thread.x % c) * c + i] * b[i * c + this.thread.x / c]; } return sum; }).setOutput([keys.length ** 2,1]); for (let i = 0; i < mm; i++) { let prold = pr; pr = []; let msum = 0; console.log(`Completed ${i} iterations`) matrixe = multiplyMatrix(matrixe, matrixe, keys.length)[0]; for (let h in matrixe) { msum += matrixe[h]; } for (let h in matrixe) { matrixe[h] /= msum / rl; } for (let una in keys) { let una2 = keys[una]; pr[una2] = 0.1 / rl; if ((frs[una2]).length == 0) continue; for (let unb in keys) { if (isNaN(prold[una2])) continue; pr[una2] += prold[una2] * matrixe[una * 1 + unb * rl]; } } let ov = Object.keys(pr); let new_sum = ov.filter(i => !isNaN(pr[i]) && main.indexOf(i) != -1).map(n => pr[n]).reduce((a, b) => a + b, 1e-9); let new_sum2 = ov.filter(i => !isNaN(pr[i]) && main.indexOf(i) == -1).map(n => pr[n]).reduce((a, b) => a + b, 1e-9); for (let unn of ov) { if (!result[unn]) { pr[unn] = 0; } else if (main.indexOf(unn) == -1) { pr[unn] /= new_sum2 * 2; } else { pr[unn] /= new_sum * 2; } } } return pr; } export { rankCalc }