GPU acceleration makes this code less spaghetti

This commit is contained in:
biglyderv 2025-02-01 08:52:47 -05:00
parent 5880b0ff2b
commit 77712b93e7

18
rank.js
View file

@ -65,7 +65,7 @@ function rankCalc(result, iterations = 10, main = [], domain_mode = false) {
if (follow == unn) continue; if (follow == unn) continue;
let dst = fnc[fnu] || 0; let dst = fnc[fnu] || 0;
let n = (keys.indexOf(unn) || 0) * (rl) + (keys.indexOf(follow) || 0) * 1; let n = (keys.indexOf(unn) || 0) * (rl) + (keys.indexOf(follow) || 0) * 1;
matrixe[n] = 1 + 5 / (dst + 3); matrixe[n] = 1 / (dst + 3);
msum_old += matrixe[n]; msum_old += matrixe[n];
} }
} }
@ -76,7 +76,7 @@ function rankCalc(result, iterations = 10, main = [], domain_mode = false) {
const multiplyMatrix = gpu.createKernel(function (a, b, c) { const multiplyMatrix = gpu.createKernel(function (a, b, c) {
let sum = 0; let sum = 0;
for (let i = 0; i < c; i++) { for (let i = 0; i < c; i++) {
sum += a[this.thread.x / c][i] * b[i][this.thread.x % c]; sum += a[this.thread.x % c][i] * b[i][this.thread.x / c];
} }
return sum; return sum;
}).setOutput([keys.length ** 2,1]); }).setOutput([keys.length ** 2,1]);
@ -86,9 +86,8 @@ function rankCalc(result, iterations = 10, main = [], domain_mode = false) {
pr = []; pr = [];
let msum = 1; let msum = 0;
let intv = Math.pow(0.01 / rl, Math.pow(0.09, i / mm)); console.log(`Completed ${i} iterations`)
console.log(`Completed ${i} iterations with ${intv} threshold`)
matrixe = multiplyMatrix(matrixe, matrixe, keys.length)[0]; matrixe = multiplyMatrix(matrixe, matrixe, keys.length)[0];
for (let h in matrixe) { for (let h in matrixe) {
@ -111,18 +110,15 @@ function rankCalc(result, iterations = 10, main = [], domain_mode = false) {
let ov = Object.keys(pr); let ov = Object.keys(pr);
let new_sum = ov.filter(i => !isNaN(pr[i]) && main.indexOf(i) != -1).map(n => pr[n]).reduce((a, b) => a + b, 1e-9); let new_sum = ov.filter(i => !isNaN(pr[i]) && main.indexOf(i) != -1).map(n => pr[n]).reduce((a, b) => a + b, 1e-9);
let new_sum2 = ov.filter(i => !isNaN(pr[i]) && main.indexOf(i) == -1 && (domain_mode && new URL(i).host == new URL(main[0]).host)).map(n => pr[n]).reduce((a, b) => a + b, 1e-9); let new_sum2 = ov.filter(i => !isNaN(pr[i]) && main.indexOf(i) == -1).map(n => pr[n]).reduce((a, b) => a + b, 1e-9);
let new_sum3 = ov.filter(i => !isNaN(pr[i]) && main.indexOf(i) == -1 && !(domain_mode && new URL(i).host == new URL(main[0]).host)).map(n => pr[n]).reduce((a, b) => a + b, 1e-9);
for (let unn of ov) { for (let unn of ov) {
if (!result[unn]) { if (!result[unn]) {
pr[unn] = 0; pr[unn] = 0;
} else if ((domain_mode && new URL(unn).host == new URL(main[0]).host) && main.indexOf(unn) == -1) {
pr[unn] /= new_sum2 * 3;
} else if (main.indexOf(unn) == -1) { } else if (main.indexOf(unn) == -1) {
pr[unn] /= new_sum3 * (domain_mode ? 3 : 2); pr[unn] /= new_sum2 * 2;
} else { } else {
pr[unn] /= new_sum * (domain_mode ? 3 : 2); pr[unn] /= new_sum * 2;
} }
} }